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We present a detailed comparison between the theoretically com-
puted spin echo decay of a fluid-saturated periodic porous medium
with strong internal field gradients and that obtained from various
approximations using the free diffusion formula which is strictly
valid only for infinite uniform fluids. The theoretical computation
of the spin echo amplitude was carried out by using the diffusion
eigenstates in Fourier representation, and the internal field gradi-
ents induced by magnetic susceptibility contrast were calculated
by using a two-component composite theory. The comparison al-
lows us to have an assessment of the regime of validity of various
approximations for a periodic porous medium where a rigorous
theoretical computation of the enhanced transverse relaxation due
to magnetic susceptibility contrast induced field heterogeneity is
possible. C© 2002 Elsevier Science (USA)
INTRODUCTION

There have been many papers (1–10) recently discussing the
internal field gradients within the pore space of a porous medium
due to magnetic susceptibility contrast between the solid matrix
and the pore fluid. Most of them use the free diffusion formula
(strictly valid only for infinite uniform fluids with a constant
field gradient), i.e.,

exp

(
−2τ

T2
− 2

3
γ 2(∇ H )2 Dpτ

3

)
, [1]

to describe the enhanced T2 relaxation in a porous medium,
where τ is half the echo spacing, γ is the gyromagnetic ratio,
Dp is the diffusion coefficient of the pore fluid, and ∇ H is the
field gradient. The volume integral of Eq. [1] was then used to
represent the overall spin echo amplitude in a porous medium
where strong internal gradients exist (1, 2).

The procedure of the volume integration was based on the
thought that the observed signal in such a system can be con-
sidered as a superposition of individual microdomains, each of
which has an effective field gradient. Hürlimann (6, 7) pointed
out that there is a field averaging effect due to spin diffusions
in heterogeneous fields and that there are several length scales
one has to consider in the analysis of the magnetization decays.
Dunn et al. (10) reviewed the detailed steps in analyzing the
17
regular CPMG echo trains and inverting them to obtain the dis-
tributions of the internal field gradients of the pore space, and
the various assumptions that one has to make in carrying out
these analyses. However, they did not address the issue of how
good the approximation is for this volume integration of signals
from microdomains.

This question can be answered for a fluid-saturated porous
medium if one can compute the spin echo amplitude rigor-
ously for such a system and the result is compared with that
obtained using the volume integration of microdomains. How-
ever, the computation of the spin echo amplitude decay affected
by bounded diffusion in a restricted geometry is a very compli-
cated matter. Early work by Neuman (11) assumed a Gaussian
phase distribution and only computed the spin magnetizations
for simple geometries such as parallel plates and spherical and
cylindrical pores. Other work (3, 12, 13) discussed only the
asymptotic behaviors at short and long times for spin diffusion
in porous media of general shapes.

Later work by Bergman and Dunn (14), however, showed that
it is possible to provide a complete description on the spin diffu-
sion in a periodic porous medium in the presence of a nonuniform
magnetic field. The field gradients can be either fixed externally
applied field gradients or internal field gradients induced by the
magnetic susceptibility contrast between the solid matrix and the
pore fluid. Such a description is possible because the diffusion
propagator of spins diffusing in the pore space for the periodic
porous medium can be worked out explicitly in terms of diffu-
sion eigenstates in Fourier representation. Hence the spin echo
amplitude decay for such a restricted geometry can be rigor-
ously computed. Also, the magnetic field distribution within the
pore space for such a system can be computed using well-known
methods in composite medium theory.

With the known magnetic field distribution within the pore
space, we can calculate the volume integration of the signals
from microdomains using the free diffusion formula (Eq. [1])
to obtain the spin echo amplitude, a commonly used proce-
dure which has never been examined. We can also compute the
spin echo amplitude rigorously using the diffusion propagator.
Thus we can make a comparison between results of the rigorous
method and those obtained from approximate approaches. Such
a comparison is essential because, while the spin echo amplitude
1 1090-7807/02 $35.00
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computed by using diffusion propagator is exact, we cannot ap-
ply this method to general disordered media. The analysis of
such a comparison will help us establish some guidelines for
using the approximate approaches, as well as limitations where
these approximations may fail.

In the following, we first review how the internal gradient is
computed in the pore space for a periodic porous medium. Then
we briefly outline how the spin echo amplitude in a periodic
porous medium is calculated. This is followed by a numerical
example for a periodic porous system of simple cubic arrays
of touching spheres. We establish, for this periodic geometry,
bounds within which the Gaussian phase approximation is valid.
Using this numerical example, various approximate approaches
are analyzed and compared with the rigorous result to elucidate
their limitations and possible error they may cause.

COMPUTATION OF INTERNAL GRADIENTS

Computing the magnetic field heterogeneities within the pore
space of a porous medium induced by the magnetic susceptibil-
ity contrast between the solid matrix and pore space is a well-
known problem and has been studied extensively in the past.
It is identical to the classical problem of computing the effec-
tive dielectric constant of a two-component composite. When
computing the effective dielectric constant of the composite, the
electric field can be evaluated at every point of either phase of the
composite. Similarly, the inhomogeneous magnetic field due to
magnetic susceptibility contrast between the two components of
the composite, i.e., solid matrix and pore fluid, can be evaluated
in the same manner. There is abundant literature on this subject.
Bergman (15–18), as well as others, have done extensive work
in this area.

Let us consider a periodic porous medium made of simple cu-
bic arrays of identical touching spheres, where the solid spheres
have a magnetic susceptibility of χm , and between the spheres
the pore space is filled with a pore fluid having a magnetic sus-
ceptibility of χp. It is shown in the Appendix that the local field
deviation δHsusc(r) from an externally applied field H0 along the
z direction due to the magnetic susceptibility contrast between
the solid matrix and pore fluid is given by

δHsusc(r) = H0
∂ψ

∂z
∼= H0

s

∑
g�=0

cos2(g, ez)θgeig·r, [2]

where s = (1 + 4πχm)/4π (χm − χp), ψ is the periodic part of
the magnetic scalar potential, g is the reciprocal lattice vector,
(g, ez) is the angle between g and the unit vector ez along the
z-axis, and θg is the Fourier coefficient of the characteristic func-
tion θ , as described in the Appendix.

From Eq. [2], the field strength at every point in the pore
space can be calculated. The field gradient can also be directly
computed as a function of spatial position
|∇δH (r)| =
[(

∂δH

∂x

)2

+
(

∂δH
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)2

+
(

∂δH

∂z

)2] 1
2

. [3]
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FIG. 1. The cross-sectional view (slightly above (100) plane) of the internal
field gradient distribution in G/cm of a periodic porous medium of simple cubic
arrays of touching spheres at an externally applied field of H0 = 234.9 G (i.e., a
proton Larmor frequency of 1 MHz), using χp = −0.7 × 10−6 emu/cm3 for the
pore water, χm = 50 × 10−6 emu/cm3 for the solid matrix, and a unit cell size
a = 10 µm for the periodic porous medium.

The volume average of |∇δH (r)|2 can also be obtained as

〈|∇δH (r)|2〉 =
(

H0

s

)2 ∑
g�=0

cos4(g, ez)|θg|2|g|2. [4]

Using χp = −0.7 × 10−6 emu/cm3 for the pore water, χm =
50 × 10−6 emu/cm3 for the solid matrix, and a unit cell size of
a = 10 µm, we computed the internal field gradient distribution
within the pore space of a three-dimensional periodic system of
simple cubic arrays of touching spheres at an externally applied
field of H0 = 234.9 G along the z direction (i.e., a proton Larmor
frequency of 1 MHz). The result is shown in Fig. 1 where the
volume elements are color coded with internal field gradient
values given in units of G/cm. Figure 2 shows the volume fraction
FIG. 2. The field gradient distribution in the pore space of a periodic porous
system computed in Fig. 1.
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having the same field gradient plotted as a function of the field
gradient of the same calculation. A straight volume average of
the field gradient gives an averaged value of 400 G/cm; the most
probable value is about 200 G/cm. As we shall see, when the true
spin echo amplitude is computed using the diffusion propagator,
the effective (or apparent) field gradient is a function of diffusion
time and is only about 100 G/cm at τ = 2 ms. This is because,
when a spin diffuses, there is a field averaging effect.

CALCULATION OF SPIN ECHO AMPLITUDE

To calculate the spin echo amplitude, we know that the phase
shift accumulated by a precessing spin in a Hahn’s spin echo
experiment with a local field deviation δH is given by � as

� = −γ

(∫ τ

0
dtδH [r(t)] −

∫ 2τ

τ

dtδH [r(t)]

)
, [5]

where γ is the gyromagnetic ratio and τ is the time duration for
spin dephasing or rephasing (i.e., the time between the initial 90◦

pulse and the subsequent 180◦ pulse in a Hahn echo experiment).
The average of the phase shift is obtained by integrating over all
possible paths and all pore space with the aid of the diffusion
propagator.

The phase average can be expressed as an expansion in cumu-
lant averages of powers of �(〈 〉c represents a cumulant average):

〈e−i�〉 = exp〈e−i� − 1〉c

= exp

[
−i〈�〉c−1

2
〈�2〉c + i

6
〈�3〉c + 1

24
〈�4〉c + · · ·

]
.

[6]

It has been shown in Ref. (14) that any odd powers of �

average to zero. When the distribution of values of� is Gaussian,
all cumulants beyond 〈�2〉c vanish. For non-Gaussian distribu-
tions, the magnitudes of 〈�4〉c and higher order terms become a
measure of the deviation from the Gaussian distribution. When
〈�4〉c and higher order terms are a significant fraction of 〈�2〉c,
the Gaussian approximation breaks down.

The theory for computing 〈�2〉 and 〈�4〉 in terms of the diffu-
sion eigenstates was described in detail previously (14, 19). We
shall briefly review the formulas of 〈�2〉 for effects of magnetic
susceptibility contrasts and externally applied fixed gradient,
and 〈�4〉 for magnetic susceptibility contrasts only. The other
formulas for 〈�4〉 for applied fixed gradient and cross term are
very lengthy. They are not reproduced here. Interested readers
should refer to Ref. (14).

As discussed in Ref. (14), 〈�2〉 can be written as

1 〈�2〉 =
(

2
∫ 2τ

dt
∫ t2

dt −
∫ 2τ

dt
∫ τ

dt

)

2γ 2

τ
2

τ
1

τ
2

0
1

· 〈δH [r(t2)]δH [r(t1)]〉. [7]
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The average over diffusion paths is

〈δH [r(t2)]δH [r(t1)]〉

= 1

Vp

∫
Vp

dV1

∫
Vp

dV2 G(r2r1 | t2 − t1)δH (r2)δH (r1). [8]

The diffusion propagator G(rr′ | t) is given by

G(rr′ | t) = 1

V

∑
nq

e−λnq|t |φnq(r)φ∗
nq(r′)eiq·(r−r′), [9]

where λnq are the eigenvalues, φnq(r) are the diffusion eigen-
states, q is a wave vector in the first Brillouin zone, n is a band
index, and V is the total volume of the pore space and solid
matrix.

Knowing δH and G(rr′ | t) from Eqs. [2] and [9], and substi-
tuting both of them into Eqs. [7] and [8], we obtain the magnetic
susceptibility contrast contribution to 〈�2〉 as given by

〈�2〉susc = 2

φ

(
γ H0

s

)2 ∑
n>0

bn(τ )|an|2, [10]

where

bn(τ ) ≡ 2τ

λn0
− 1

λ2
n0

(
1 − e−λn0τ

)(
3 − e−λn0τ

)
for λn0 �= 0

[11]

an ≡
∑
g�=0

cos2(g, ez)θ
∗
g φ̃n0(g) [12]

φ̃n0(g) = 1

Va

∫
Va

dV θp(r)e−ig·rφn0(r). [13]

The externally applied fixed gradient contribution to 〈�2〉 is
given by

〈�2〉grad = (γ∇ H )2 4

3
Deτ

3 + 1

φ

∑
n>0

bn(τ )

×
[(

γ∇ H · ∂

∂q

)2

|φ̃nq(0)|2
]

q=0
, [14]

where De is the effective diffusion coefficient at the long time
limit for a restricted geometry.

The pure magnetic susceptibility contrast part of 〈�4〉 is
given by
1

24
〈�4〉susc = 1

φ
(4π�χγ H0)4

∑
n,m,l

bnml(τ )ananmamla
∗
l , [15]
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where an is given by Eq. [12], and

anm ≡
∑
g�=0

cos2(g, ez)θ∗
g ωnm(g) [15]

ωnm(g) ≡ 1

Va

∫
Va∩Vp

dV φ∗
n0(r)φm0(r)e−ig·r

=
∑

g′
φ̃∗

n0(g′)φ̃m0(g + g′). [16]

The formulas for bnml(τ ) are quite lengthy and can be found in
Ref. (14).

BOUNDS FOR GAUSSIAN APPROXIMATION

Now that we know how to compute the internal gradients as
well as compute the spin echo amplitude of a periodic porous
medium exactly, we are in a position to evaluate various approxi-
mate formulas where the free diffusion equation (Eq. [1]) is used.
We can, for example, examine the accuracy of the approach of
the volume integration of microdomains.

There are various forms of approximations. First of all, we
should realize that the volume average of the internal field gra-
dients is not the same as the apparent field gradient obtained
from using Eq. [1] in analyzing a set of CPMG data with a
known diffusion coefficient and different τ ’s. The volume aver-
aging of the internal field gradients is a linear operation, whereas
the apparent field gradient in Eq. [1] is weighted exponentially.
Thus replacing the field gradient term in Eq. [1] with the volume
averaged field gradient is bound to overestimate the attenuation
of the magnetization.

Second, for a space with magnetic field gradients, if we were
to use Eq. [1] as the integrand to compute the total magnetization
of the system in the following integral

∫
d3r exp

[
−2

3
γ 2(∇ H (r))2 Dpτ

3

]
[17]

or

∫
dg P(g) exp

[
−2

3
γ 2g2 Dpτ

3

]
, [18]

where g is the field gradient (denoted as ∇ H in Eq. [17] and
previously), and P(g) is the volume fraction having the field
gradient g, we implicitly assume that each volume element of
the integration behaves as if it is an isolated element which
possesses the property of an infinite uniform medium, whereas
in reality the spin diffuses freely among volume elements with
very different values of field gradient.

Certainly, these approximations need re-evaluation to estab-
lish their bounds of validity. Before we do that, it is important

to first establish the bounds of validity for the Gaussian phase
approximation. For a system of simple cubic arrays of touch-
DUNN

ing spheres, where the interstitial space is filled with water, we
have computed the values of 1

2 〈�2〉c and 1
24 〈�4〉c for the diffus-

ing spin in the pore space as a function of τ . For convenience,
we shall define the time when the absolute value of the ratio
1
24 〈�4〉c/

1
2 〈�2〉c reaches 20% as the upper bound for the valid-

ity of Gaussian phase approximation.
For the computation of 1

2 〈�2〉c,grad and 1
24 〈�4〉c,grad due to

the fixed externally applied field gradient, we have to carry out
second and fourth order differentiation numerically (see detailed
discussion in Ref. (14)). This computation becomes less and less
accurate for larger sizes of unit cell, as the error of eigenvectors
gets magnified drastically. The computation for 1

2 〈�2〉c,susc and
1
24 〈�4〉c,susc due to magnetic susceptibility contrast induced field
inhomogeneity is much more accurate because there is no differ-
entiation involved. Thus, we shall focus our discussion only on
the effect of the magnetic susceptibility contrast induced field
inhomogeneity and its subsequent influences on the Gaussian
phase approximation as well as the various approximations for
the associated magnetization decay.

Figure 3 shows the second and fourth order cumulant av-
erages as a function of τ for simple cubic arrays of touch-
ing spheres with a unit cell of length a = 10 µm in an ex-
ternally applied field of H0 = 234.9 G along the z direction,
where the magnetic susceptibility for the pore fluid (water) is
χp = −0.7 × 10−6 emu/cm3 and that for the solid matrix is
χm = 50 × 10−6 emu/cm3. We use a self diffusion coefficient
for water D = 2.5 × 10−5 cm2/s. The results for 1

2 〈�2〉c,susc and
− 1

24 〈�4〉c,susc are shown as open circles and squares, respec-
tively. Here the value of 1

24 〈�4〉c,susc is negative. Thus,

〈�4〉 < 3〈�2〉2, [19]
FIG. 3. The cumulant averages of phase of diffusing spins in a periodic
porous medium of simple cubic arrays of touching spheres, as for Fig. 1.
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and the large φ values are less probable than for the Gaussian
phase distribution, which would have made both sides of Eq. [19]
equal. Hence, the phase distribution is narrower than that of the
normal Gaussian distribution. According to our definition of a
threshold of 20% for the ratio, the Gaussian phase approximation
is valid up to a τ of 2.4 ms. Note that the τ shown in the figure
is the τ in a Hahn’s spin echo experiment, not the time in a
CPMG spin echo train. The results of a similar calculation using
χm = 10 × 10−6 emu/cm3 and the same χp value as that used
previously are shown as solid diamonds and circles, where the
absolute value of the ratio of 1

24 〈�4〉c/
1
2 〈�2〉c reaches only 5%

for a τ of 8 ms.
Following such a definition of a threshold of 20% for the ra-

tio, we have mapped out a region for the validity of Gaussian
phase approximation as a function of 4π |�χ |γ H at various
unit cell sizes for a simple cubic array of touching spheres. Re-
sults of the computation are shown in Fig. 4a. Note that from
Eqs. [10] and [15], 1

2 〈�2〉c,susc is proportional to (4π |�χ |γ H )2,
whereas 1

24 〈�4〉c,susc is proportional to (4π |�χ |γ H )4. Thus,
the absolute value of the ratio of 1

24 〈�4〉c/
1
2 〈�2〉c is propor-

tional to (4π |�χ |γ H )2 multiplied by a function related to the
geometry of the porous system. For illustrative purposes, we
place a scale for |�χ | at 1-MHz proton Larmor frequency at
the top. For 2 MHz, the scale would be expanded twice as
large.

Note that for the unit cell of size a = 10 µm, 1
24 〈�4〉c,susc

becomes positive for τ above 40 ms. For this region, the data
points are represented as solid rather than open circles. Even
though the quantity

〈�4〉c,susc = 〈�4〉susc − 3〈�2〉2
susc [20]

scales strictly as (4π�χγ H )4, the RHS of [20] is depen-
dent on unit cell size and diffusion coefficient through their
eigenvalues.

The fact that for unit cell sizes of 50 and 100 µm and the
part of 10 µm that 1

24 〈�4〉c,susc is negative reflects that phase
distributions are narrower than the normal Gaussian form, be-
cause of the restricted geometry. As the unit cell size becomes
smaller, the internal gradient becomes larger, its effect eventu-
ally becomes more dominant than the restriction of the geom-
etry, and it leads to a phase distribution broader (i.e., longer
tail) than the Gaussian form. Solid matrix forms other than
spheres, such as sharp corners or thin flakes, often have very
strong field gradients or even singularities near the high curva-
ture points. This kind of pore fabric can easily generate a non-
Gaussian phase distribution which is broader than the normal
Gaussian form.

Figure 4b shows the results of Fig. 4a using the normalized to-
tal magnetization of the system at the diffusion time τ where the
Gaussian approximation fails. We notice that there is a trough

at intermediate values for 4π |�χ |γ H . This is because the rel-
ative absolute value of 1

24 〈�4〉c goes through a minimum as
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FIG. 4. (a) The map showing the regime where Gaussian approximation
is valid for a periodic system of simple cubic arrays of touching spheres for
different unit cell sizes, with an externally applied field of H0 = 234.9 G (i.e.,
a proton Larmor frequency of 1 MHz) and a diffusion coefficient for water
D = 2.5 × 10−5 cm2/s. All data have a negative 〈�4〉susc except part of 10-µm
data which have a positive 〈�4〉susc and are indicated by solid circles. (b) The
same as (a) except that the y-axis is replaced with the total magnetization of the
system at the diffusion time τ when the Gaussian approximation fails.

4π |�χ |γ H goes from large values to small values. To meet
the condition of the 20% threshold, the corresponding domi-
nant term, 1

2 〈�2〉c, has to go to a longer diffusion time, and
hence, a higher value, which leads to a lower magnetization. As

4π |�χ |γ H becomes even smaller, eventually both | 1

24 〈�4〉c|
and 1

2 〈�2〉c become smaller, which leads to an increase of
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magnetization at the 20% threshold at even longer diffusion
time. Thus the magnetization of the system at the threshold goes
through a minimum. This is true for both 50- and 100-µm cases.
For the case of 10 µm, such a process actually resulted in a
change of sign for 1

24 〈�4〉c.

COMPARISON OF VARIOUS APPROXIMATIONS

To make a comparison between the true spin echo ampli-
tude of the periodic porous medium computed exactly and that
for various approximations, we use the same example whose
field map and distributions are shown in Figs. 1 and 2; i.e.,
the external field is H0 = 234.9 G, the unit cell has a length
a = 10 µm, χp = −0.7 × 10−6 emu/cm3 for the pore fluid, χm =
50 × 10−6 emu/cm3 for the solid matrix, and the diffusion co-
efficient D = 2.5 × 10−5 cm2/s for the water. The result of such
a comparison is shown in Fig. 5 where the computed spin echo
amplitudes as a function of τ in a Hahn’s spin echo experiment
are plotted.

The true spin echo amplitude computed using the diffusion
propagator is shown as solid circles along with other approx-
imations for the magnetization. The magnetization computed
using the volume averaged field gradient and the free diffusion

FIG. 5. The spin echo amplitude as a function of τ for a periodic system
of simple cubic arrays of touching spheres, where the magnetic susceptibility
and proton Larmor frequency values are the same as those in Fig. 1 and the
bulk diffusion coefficient for water D = 2.5 × 10−5 cm2/s. The solid circles
represent the true total magnetization computed theoretically using Eq. [6]. The
open squares represent the total magnetization computed using the free diffusion
formula and Eq. [4], the volume averaged field gradient, as the gradient in the
exponent. The open diamonds represent the total magnetization computed using
the integration of microdomains, i.e., Eq. [17], where the microdomain is an
element of 100 × 100 × 100 mesh of a unit cell and the field gradient is the

averaged field gradient of that volume element. The open circles represent the
magnetization computed using the free diffusion formula with a fixed applied
field gradient of 100 G/cm. The last one is plotted for comparison purposes.
DUNN

formula, shown as open squares, gives the worst estimates, which
significantly overestimate the attenuation as we expected. The
magnetization obtained by integrating microdomains over the
pore volume, using the averaged field gradient and the free diffu-
sion formula for each microdomain, is shown as open diamonds.
It gives good estimates at small τ initially. Then it starts to over-
estimate the attenuation of the magnetization until a crossover at
around τ = 5 ms, after which the integrated value becomes larger
than the true magnetization. This type of approximation treats
each volume element of integration as an isolated microdomain
and neglects the field averaging effect of spin diffusion across the
boundary of these microdomains. Thus, in the very beginning,
when diffusion is limited, it is a good approximation. As dif-
fusion time gets longer, it starts to overestimate the attenuation
of magnetization. When the diffusion time gets even longer, the
microdomains with high field gradients no longer contribute to
the signal, leaving only those with low field gradients. The latter
were prevented from further degradation since no spin diffusion
was allowed across the boundaries between the microdomains.
Thus at very long diffusion time, the integration method over-
estimates the magnetization.

The open circle in Fig. 5 is simply a magnetization using free
diffusion formula with a uniform field gradient of 100 G/cm. It
is plotted as a reference for discussion purposes. We note that
in the beginning, the true magnetization is initially smaller than
what is expected from the free diffusion in 100 G/cm. Thus it has
an apparent field gradient somewhat larger than 100 G/cm. Note
that the pore space has an averaged field gradient of 400 G/cm
and a most probable gradient of 200 G/cm as shown in Fig. 2.
The logarithm of the true magnetization displays a τ 3 behavior
initially. As the τ increases, the behavior becomes linear in τ ,
as discussed by de Swiet and Sen (3).

If we use the free diffusion formula (Eq. [1]) as a reference,
we can back calculate an effective or apparent field gradient,
geff, from the total magnetization of the system, M(2τ )/M0, as
follows,

M(2τ )

M0
= exp

[
−2

3
γ 2g2

eff Dpτ
3

]
, [21]

where the total magnetization can be either the true magneti-
zation or the magnetization obtained from volume integration
of microdomains, each domain using the free diffusion formula
and the volume averaged field gradient within that microdomain.
Figure 6 shows such a comparison between the back calculated
apparent field gradients and the true volume average of the in-
ternal field gradients as a function of magnetic susceptibility
difference |�χ | at τ = 0.2 ms using the same values for χp, D,
and H0 as those used previously. Figures 7 and 8 show results
of similar calculations for τ at 1 and 2 ms.

The apparent field gradient back calculated from the true mag-
netization is denoted by a solid circle, that from the volume

integration of microdomains is denoted by a diamond, and the
true volume average of the internal field gradients is denoted
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FIG. 6. The apparent field gradient at a proton Larmor frequency of 1 MHz
as a function of magnetic susceptibility difference |�χ | for a periodic system
of simple cubic arrays of touching spheres (with the pores containing water
with D = 2.5 × 10−5cm2/s) for a unit cell size of 10 µm at τ = 0.2 ms. The
solid circles, true magnetization; open squares, volume ave gradient; and open
diamonds, integrate microdomains; are the same as those defined in Fig. 5.

by a square. This is just a different way of looking at the same
properties which we discussed in Fig. 5, except that instead of
magnetizations as functions of diffusion time τ for a fixed |�χ |,
we are looking at apparent field gradients as functions of |�χ |
at a fixed τ .

FIG. 7. The apparent field gradient at a proton Larmor frequency of 1 MHz
as a function of magnetic susceptibility difference |�χ | for a periodic system
of simple cubic arrays of touching spheres (with the pores containing water

−5 2
with D = 2.5 × 10 cm /s) for a unit cell size of 10 µm at τ = 1 ms. The
solid circles, true magnetization; open squares, volume ave gradient; and open
diamonds, integrate microdomains; are the same as those defined in Fig. 5.
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FIG. 8. The apparent field gradient at a proton Larmor frequency of 1 MHz
as a function of magnetic susceptibility difference |�χ | for a periodic sys-
tem of simple cubic arrays of touching spheres (with the pores containing
water with D = 2.5 × 10−5 cm2/s) for a unit cell size of 10 µm at τ = 2 ms.
The solid circles, true magnetization; open squares, volume ave gradient; and
open diamonds, integrate microdomains; are the same as those defined in
Fig. 5.

In general, the apparent field gradient back calculated from
the true magnetization is the smallest of the three, whereas the
volume average of the true internal gradients should have the
largest value. When the diffusion time τ is very small, such
as τ = 0.2 ms, the apparent field gradient calculated from the
integration of magnetization over microdomains is very close
to the volume average of internal gradients. The apparent field
gradient of the true magnetization at τ = 0.2 ms is already about
a factor of three less than the other two. As the diffusion time
τ increases to 1 and 2 ms, such separation becomes larger and
larger.

The apparent field gradient from the integrated magnetiza-
tions over microdomains, when compared to that calculated
from the true magnetization, has a crossover behavior similar
to the one discussed in Fig. 5. For example, in Fig. 8 when
the diffusion time τ = 2 ms, the apparent field gradient cal-
culated from integrated magnetizations over microdomains is
much larger than that calculated from the true magnetization for
small |�χ |. As |�χ | increases, the internal field gradient in-
creases. As a result, the signals from some of the microdomains
diminish very quickly, resulting in a reduction of apparent
field gradient. Because there is no communication between mi-
crodomains, further increase of |�χ | simply leads to attenua-
tion of signals of more microdomains, eventually resulting in
an apparent field gradient smaller than that calculated from true
magnetization.
Figures 9 and 10 show results of similar calculation, using
the same values for χp, D, and H0 as those used previously, for
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FIG. 9. The apparent field gradient at a proton Larmor frequency of 1 MHz
as a function of magnetic susceptibility difference |�χ | for a periodic system
of simple cubic arrays of touching spheres (with the pores containing water
with D = 2.5 × 10−5 cm2/s) for a unit cell size of 50 µm at τ = 2 ms. The
solid circles, true magnetization; open squares, volume ave gradient; and open
diamonds, integrate microdomains; are the same as those defined in Fig. 5.

τ = 2 ms for unit cell sizes of 50 and 100 µm. Larger pore
size leads to smaller internal field gradients for the same |�χ |.
The general behavior is similar to what we have discussed
previously.

FIG. 10. The apparent field gradient at a proton Larmor frequency of 1 MHz
as a function of magnetic susceptibility difference |�χ | for a periodic system
of simple cubic arrays of touching spheres (with the pores containing water

−5 2
with D = 2.5 × 10 cm /s) for a unit cell size of 100 µm at τ = 2 ms. The
solid circles, true magnetization; open squares, volume ave gradient; and open
diamonds, integrate microdomains; are the same as those defined in Fig. 5.
DUNN

DISCUSSION

Experiments by Bendel (1) on a saturated sand–water mixture
provide evidence that τ 3 behavior for magnetization attenuation
is not valid for large τ in restricted geometries. The magneti-
zation shown in Fig. 4 of Bendel’s paper is quite similar to the
computed magnetization shown in Fig. 5 of the present work.
Of course, the grain size as well as the magnetic susceptibility
difference |�χ | affect the τ value where the behavior departs
from that for an infinite medium.

Experimental works by Brown and Fantazzini (4) and Borgia
et al. (5) on fluid-saturated microporous porcelain samples indi-
cate a non-Gaussian phase distribution for the spins. Their data
suggest a truncated Cauchy distribution with a long tail. It is
different from our geometry of touching spheres which shows
a negative 〈�4〉c, i.e., 〈�4〉 ≤ 3〈�2〉2, reflecting the effect of a
restricted geometry. The microporous porcelain may have sharp
corners which generate large local magnetic field gradient, caus-
ing a long tail in phase distribution and leading to a positive
〈�4〉c.

The work by Hürlimann (6, 7) suggested a few length scales
which are quite convenient for the present discussion:

1. the diffusion length, lD ≡ √
Dpτ , where Dp is the self-

diffusion coefficient of the pore fluid and τ is the diffusion time,
2. the size of the pore, ls , and
3. the dephasing length, lg ≡ (Dp/(γ g))1/3.

The first two length scales are commonly known. The third
one, the dephasing length, can be thought of as the distance over
which the spin must travel to dephase by a radian. It has the prop-
erties that it is small for large field gradient and large for small
field gradient. In the process of the integration for the magneti-
zation, however, we typically have a constant pixel size. When
the pixel size is smaller than lg , and at a very short diffusion time,
integration of magnetization is a good approximation. However,
as the diffusion time gets longer, a field averaging effect occurs
on a length scale of lg , whereas the pixel integration does not
allow spin mixing, thus giving a higher attenuation and a higher
apparent field gradient. This is illustrated in Figs. 6 through 10
for small |�χ |. When the pixel size is of the same order as lg ,
then the pixel integration gives the best approximation at a dif-
fusion time on the order of τ ≈ l2

g/Dp. When the pixel size is
larger than lg , typically, the volume averaged field gradient is
used for the pixel, thus resulting in a higher attenuation for the
magnetization at short diffusion time. But as diffusion time gets
longer, the isolated pixel effect will again cause overestimation
of magnetization. This is illustrated in Figs. 6 through 10 in the
crossover behavior of the apparent field gradient for the pixel
integration compared to the true magnetization.

From the above discussion, it is apparent that one should be
careful in using Eq. [1] for analyzing data obtained from a re-
stricted geometry. There are at least three steps of consideration

in analyzing the data. First of all, one should make sure that the
data should be well within the regime of validity for Gaussian
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approximation. Second, when the Gaussian approximation is
satisfied, the effective or apparent field gradient obtained from
using Eq. [1] is generally much smaller than the true volume
average of the field gradients due to the field averaging effect of
the spin diffusion. At this juncture, one can use a true volume
averaged field gradient but a time dependent effective restricted
diffusion coefficient instead of the bulk diffusion coefficient in
Eq. [1] to take care of the effect. However, as diffusion time be-
comes longer, 〈�4〉c and higher order terms become important,
Gaussian approximation eventually fails, and even this modi-
fied free diffusion formula with the time dependent restricted
diffusion coefficient is no longer valid.

APPENDIX

In the following, we use Bergman’s method (18) to compute
the internal field gradients of the pore space. It is based on a
Fourier-space representation of an integral equation for the static
magnetic potential.

Consider a porous medium with two phases, solid matrix and
pore fluid, which fills up the entire volume between two infinite
parallel plates. The plates are perpendicular to the z-axis, and the
distance between them is L . In magnetostatics, when the current
density is zero, the governing equation reduces to the Laplace
equation for a magnetic scalar potential ϕ(r),

∇ · µ(r)∇ϕ(r) = 0, [A.1]

where

µ(r) = µmθm(r) + µpθp(r) [A.2]

µ(r) = µm

(
1 − 1

s
θp

)
, s = µm

µm − µp
[A.3]

and µm and µp are the magnetic permeability of solid matrix
and pore fluid, respectively. θm and θp are the characteristic func-
tions, having a value of either 1 or 0, which define the domain
for solid matrix and pore space, respectively. The boundary con-
ditions to be satisfied are ϕ = 0, L for z = 0, L on the parallel
plates, respectively, and ∂ϕ/∂n = 0 on the side walls.

Equation [A.1] can then be written as

∇2ϕ(r) = 1

s
∇ · θp(r)∇ϕ(r) [A.4]

which has a solution given by

ϕ(r) = z − 1

s

∫
dV ′G(r, r′)∇′ · θ ′∇′ϕ(r′)

= z + 1

s

∫
dV ′θp(r′)∇′G · ∇′ϕ
ϕ = z + 1

s
�̂ϕ, [A.5]
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where

�̂ϕ =
∫

dV ′θp(r′)∇′G(r, r′) · ∇′ϕ(r′) [A.6]

and G(r, r′) is the Green’s function which satisfies the bound-
ary conditions and �̂ can be shown to be a Hermitian operator
defined by Eq. [A.6].

If the porous medium we consider is periodic, then the func-
tion ψ(r), obtained by subtracting from the potential ϕ(r) the
linear function z

ψ(r) ≡ ϕ − z = 1

s
(�̂z + �̂ψ) [A.7]

is also periodic. In fact, this periodic function ψ(r) is the
part of the magnetic scalar potential which gives rise to the
magnetic susceptibility contrast induced field inhomogeneities.
Note that the potentials we discuss here, ψ(r) and ϕ(r), are
referring to the responses to the applied potential, z, which
generates a unit field strength. Thus if the applied field is H0

along the z-axis, and the local field is H (r), then the local
field deviation δHsusc(r) due to the susceptibility contrast is
given by

δHsusc(r) ≡ H (r) − H0 = H0∇(ϕ − z) = H0∇ψ. [A.8]

Since ψ(r) is periodic, we can therefore represent ψ by a Fourier
series

ψ(r) =
∑

g

ψgeig·r, [A.9]

where the sum is over all the vectors g of the reciprocal lattice.
The Fourier coefficients of ψ(r) are given by

ψg = 1

Va

∫
Va

dV ψ(r)e−ig·r, [A.10]

where Va is the volume of the unit cell of the periodic composite.
To obtain ψ(r), we need only to compute ψg. From Eq. [A.7],

we get

sψ − �̂ψ = �̂z. [A.11]

Its Fourier component can be obtained as:

sψg −
∑

g′

g · g′

|g|2 θg−g′ψg′ = −ig · ez

|g|2 θg, [A.12]
where θg is the Fourier coefficient of θp(r) and ez is the unit
vector along the z-axis.
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Let ag ≡ i |g|ψg for g �= 0; Eq. [A.12] can be symmetrized to

sag = cos(g, ez)θg +
∑
g′ �=0

�̂gg′ag′ , [A.13]

where

�̂gg′ ≡ cos(g, g′)θg−g′ [A.14]

and (g, ez) and (g, g′) represent the angles between g and ez, and
g and g′, respectively.

ag can now be solved through successive substitutions,

ag = 1

s
cos(g, ez)θg + 1

s2

∑
g′ �=0

�̂gg′ cos(g′, ez)

+ 1

s3

∑
g′ �=0

∑
g′′ �=0

�̂gg′ �̂g′g′′ cos(g′′, ez) + · · · . [A.15]

Since s = (1 + 4πχm)/4π (χm − χp) (where χm and χp are
the magnetic susceptibility of the solid matrix and pore fluid,
respectively) is typically a very large number, an excellent ap-
proximation is obtained by taking only the first term on the RHS
of Eq. [A.15]

ag ≡ i |g|ψg
∼= 1

s
cos(g, ez)θg. [A.16]

Thus the local field deviation δHsusc(r) due to the magnetic
susceptibility contrast can be obtained as
δHsusc(r) = H0
∂ψ

∂z
∼= H0

s

∑
g�=0

cos2(g, ez)θgeig·r. [A.17]
DUNN
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